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USING THE PERTURBATION METHOD TO SOLVE THE PROBLEM

OF SEPARATED INCOMPRESSIBLE FLOW PAST THIN AIRFOILS

UDC 532.5V. B. Kurzin

A model for separated incompressible flow past thin airfoils in the neighborhood of the “shockless
entrance” condition is constructed based on the averaging of the vortex shedding flow past the airfoil
edges. By approximation of the vortex shedding by two vortex curves, determination of the average
hydrodynamic parameters is reduced to a twofold solution of an integral singular equation equivalent
to the equation describing steady-state nonseparated airfoil flow. In this case, the calculation time
is two orders of magnitude smaller than the time required for the solution of the corresponding
evolution problem. The results of a test calculation using the proposed method are in fair agreement
with available results of calculations and experiments.
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Introduction. Separated flows past bodies have been the subject of extensive research [1–3]. A classification
of computational techniques for such flows is given in [2]. A separate group is distinguished that contains vortex
models for inviscid flow using additional hypotheses such as the Joukowski—Chaplygin hypothesis, for which the
main approaches to numerical implementation are described in [1]. The computational methods for separated flow
past bodies considered in [1] are further developed in [3] taking into account fluid viscosity and using the boundary
layer model.

The numerous examples of separated flow calculations given in [1, 3] and their comparison with experimental
data show that the calculated velocity field is in good qualitative agreement with real fluid flows, and in a certain
range of Reynolds numbers, good quantitative agreement between their hydrodynamic parameters is observed.

However, calculations of the formation and development of discontinuity surfaces modeling vortex shedding
from airfoils in ideal fluid flow are laborious. Additional difficulties arise in flow averaging because separated airfoil
flow is always unsteady and tends to steady-state flow only on the average [2].

The present paper deals with the development of a method for calculating separated incompressible flows past
thin airfoils that is free from the above-mentioned drawbacks of existing computational methods for an asymptotic
approximation of the solution of this problem.

1. Formulation of the Problem. We consider ideal incompressible flow over a curvilinear airfoil at an
angle of attack

α = α0 + ε, 0 < ε � 1, (1.1)

where α0 is the angle of “shockless entrance” at which the flow velocity in the neighborhood of the leading edge of
the airfoil is limited.

Assuming that flow separation occurs only from the airfoil edges, we schematically represent the instanta-
neous position of the vortex shedding from the edges (Fig. 1), which can be calculated using the methods described
in [1].
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Fig. 1. Diagram of separated flow past a thin airfoil: 1 and 2 are free vortices shedding from the
leading and rear edges of the airfoil.

In the ideal fluid model, the complex flow velocity in the plane z = x + iy at each time t can be written as

V̄ (z, t) = V̄∞ +
1

2πi

(∫

L0

γ0(ζ0, t) dζj

z − ζ0(t)
+

2∑
j=1

∫

L′
j

γj(ζj , t) dζj

z − ζj(t)

)
, V̄∞ = q∞ e−iα,

ζj = ξj + iηj , ζ0 ∈ L0, ζj(t) ∈ L′
j(t) at j = 1, 2,

where L0 is the airfoil contour, L′
j (j = 1, 2) are the contours of the vortex shedding from the leading and rear

edges, respectively, γj is the intensity per unit length of the vortex sheets modeling the airfoil contours L0 and the
vortex shedding L′

j.
The free vortex particles belonging to L′

j (j = 1, 2) pass through almost every point of a certain band Ω,
whose boundaries are shown in Fig. 1 by solid curves. At the fixed points of the region Ω at the time t, the fluid
vorticity ω(ζ, t) �= 0 if ζ ∈ L′

j and ω(ζ, t) = 0 if ζ /∈ L′
j (j = 1, 2). In view of this circumstance, the complex flow

velocity at the time t can be written as

V̄ (z, t) = V̄∞ +
1

2πi

(∫

L0

γ0(s0, t) ds0

z − ζ0(s0)
+

∫

Ω

ω(ζ, t) dσ

z − ζ

)
, (1.2)

where ζ = ξ + iη ∈ Ω, dσ is an element of the region Ω, and s0 is the arc coordinate L0, with origin at the leading
edge.

Assuming that in the neighborhood of the airfoil, the flow is on the average steady-state in time, we introduce
the average quantities

〈V̄ (z)〉 =
1
T

T∫

0

V̄ (t, z) dt, 〈ω(z)〉 =
1
T

T∫

0

ω(t, z) dt, 〈γ0(s0)〉 =
1
T

T∫

0

γ0(t, s0) dt (T → ∞). (1.3)

According to (1.2), these quantities obey the relation

〈V̄ (z)〉 = 〈q(z)〉 e−i〈θ(z)〉 = V̄∞ +
1

2πi

(∫

L0

〈γ0(s0)〉 ds0

z − ζ0(s0)
+

∫

Ω

〈ω(ζ)〉 dσ

z − ζ

)
, (1.4)

where Ω is a layer of finite thickness with the average particle vorticity.
The fluid flow considered satisfies the condition of nonpenetration through the contour L0, which for the

average flow can be written as

Im
{
〈V̄ (z0)〉 eiθ0(z0)

}
= 0, z0 ∈ L0, (1.5)

where θ0(z0) is the angle between the tangent to L0 at the point z0 and the Ox axis.
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Substitution of (1.4) into (1.5) yields the integral equation
∫

L0

〈γ0(ζ0)〉K0(z0, ζ0) dζ0 +
∫

Ω

〈ω(ζ)〉K0(z0, ζ) dσ = 2πq∞ sin [α − θ0(z0)],

K0(z0, ζ0) = − (x0 − ξ0) cos θ0(z0) + (y0 − η0) sin θ0(z0)
(x0 − ξ0)2 + (y0 − η0)2

, ζ0 ∈ L0,

(1.6)

in which both the required function 〈γ0(ζ0)〉 and the function 〈ω(ζ)〉 are unknown. The latter function is determined
using the Joukowski–Chaplygin condition from formula (1.3) in solving the initially-boundary-value problem of
separated airfoil flow.

Taking into account the assumption (1.1) that the deviation of the angle of attack α from the angle of
“shockless entrance” α0 is small, we solve the problem in question using a perturbation method [4]. For this, we
write the required functions as the sum of two components

〈γ0(s0)〉 = γ00(s0) + 〈γ′
0(s0)〉, 〈V̄ (z)〉 = V̄0(z) + 〈V̄ ′(z)〉, (1.7)

where γ00(s0) and V̄0(z) are the required corresponding to the “shockless entrance” condition, 〈γ′
0(s0)〉 and

〈V̄ ′(z)〉 are their perturbed components for α = α0 + ε. For the perturbed component of the fluid velocity, except
in a small neighborhood of the leading edge of the airfoil, we assume

〈q′(z)〉 = O(ε), 〈V̄ ′(z)〉 = 〈q′(z)〉 e−i〈θ′(z)〉 . (1.8)

The function γ00(s0) satisfies the equation
∫

L0

γ00(s0)K0(z0, ζ0(s0)) ds0 = 2πq∞ sin [α0 − θ0(z0)], z0 ∈ L0, (1.9)

whose solution is sought in the class of bounded functions on both ends of the contour L0. For this class of solutions,
the corresponding solvability condition for the equation can be treated as an equation for the angle of “shockless
entrance” α0.

According to perturbation method, the function 〈γ′
0(s0)〉 should satisfy the equation

∫

L0

〈γ′
0(s0)〉K0(z0, ζ0) ds0 +

∫

Ω

〈ω(ζ)〉K0(z0, ζ) dσ = 2πq0∞ cos [α0 − θ0(z0)]ε. (1.10)

As shown below, the vortex sheet Ω in which the function 〈ω(ζ)〉 is defined can be modeled by two vortex curves,
whose parameters depend only on two undetermined constants. In this model, the solution of Eq. (1.10) is found
with accuracy up to the second order of smallness in ε.

2. Vortex Sheet Model Ω. Since the interactions of the vortex particles with each other and with the
airfoil are different in nature, it is expedient to divide the vortex sheet Ω into three subregions Ωj so that the
coordinates x of the points belonging to it satisfy the conditions

x > c at z ∈ Ω1,

0 � x � c at z ∈ Ω2,

−ε̃ � x < 0 at z ∈ Ω3.

2.1. Flow Model for the Subregion Ω1. In a linear approximation, it is usually assumed that the free vortex
particles past a body in flow move at the main-flow velocity V̄0(z). Figure 2 gives a schematic representation of
a certain segment Ω1. In the figure, the curves u and s show the natural curvilinear coordinates directed along
main-flow streamlines and normal to them. The values of u = 0 and h define the upper and lower boundaries of
the region Ω1, the value of sc is taken for x = c, and the hatched regions correspond to the vorticity diagram for
s = const.

According to the Thompson theorem, the following equality holds:
h∫

0

ω(s, u) du = 0. (2.1)
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Fig. 2. Vortex sheet model past the airfoil.

Here and below, the angle brackets are omitted since they correspond only to the perturbed components of the
flow parameters, which have their own notation. For simplicity without loss of generality, we assume that on the
segment (0, h), the value ω(s, u) vanishes not only at its ends but also at one point for a certain value of u = h1.
Then, according to (2.1) and in view of (1.8), we have

h1∫

0

ω(s, u) du = −
h∫

h1

ω(s, u) du = γ1(s) = O(εq∞). (2.2)

The integrals over the upper and lower parts of the region Ω1 are considered equal to the average intensities per
unit length of the vortices shedding from the leading and rear edges of the airfoil, respectively.

The multiple integral on the left side of (1.10) for ζ ∈ Ω1 can be written in the form of the repeated integral

J1 =

∞∫

sc

( h(sc)∫

0

ω(ζ)K0(z0, ζ) du
)

ds.

The function K0(z0, ζ) is expended in a Taylor series in the variable u in the neighborhood of the value u = 0 for
arbitrary s > 0:

K0(z0, ζ) = K0(z0; s, 0) +
∂K0

∂u

∣∣∣
u=0

u + . . . .

Assuming that h/c = O(ε) and taking into account (2.2), with accuracy up to terms of the second order of smallness
we obtain

J11 =

h∫

0

ω(ζ)K0(z0, ζ) du =
∂K0

∂u

∣∣∣
u=0

h∫

0

ω(s, u)u du.

For the centers of vorticity of the particles shedding from the leading and rear edges for fixed values of s1, we write
the expressions

u11(s) =

h∫

h1

ω(s, u)u du
/ h∫

h1

ω(s, u) du,

u12(s) =

h1∫

0

ω(s, u)u du
/ h1∫

0

ω(s, u) du,

and introduce the quantity that defines the distance between these centers:

δ1(s) = u11(s) − u12(s) = O(εc). (2.3)
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Then, in view of (2.2), we obtain

J11 = −γ1(s)δ1(s)
∂K0

∂u

∣∣∣
u=0

.

Thus, the vortex sheet Ω at x > c is modeled by two vortex curves L1 and L2, which are discontinuity curves with
values −γ1(s) and γ1(s), respectively, separated by a distance δ1(s) from each other.

Using the relation

q0(s)γ1(s) = const (2.4)

for the discontinuity curves and the relation

q0(s)δ1(s) = const,

which follows from the continuity equation, we obtain

γ1(s) = γ1∞q0∞/q0(s), δ1(s) = δ1∞q0∞/q0(s). (2.5)

Here q0(s) is the modulus of the velocity of the main flow, whose complex velocity is defined by the formula

V̄0(z) = q0(z) e−iθ(z) = V̄0∞ +
1

2πi

∫

L0

γ00(s0) ds0

z − ζ0(s0)
, V̄0∞ = q0∞ e−iα0 , (2.6)

γ00(s0) is a solution of Eq. (1.9); γ1∞ is the intensity of the vortex sheet L2 (the velocity discontinuity at L2) and
δ1∞ is the distance between the curves L1 and L2 at infinity from the airfoil.

Therefore, the double integral on the left of Eq. (1.10) reduces the integral of a function of one variable
dependent on two undetermined constants.

Let us show that using the model considered, we can estimate the loss of the total pressure due to the flow
energy consumption in the vortex shedding process. For this, we use the Lamb–Gromeka equation for ideal fluid
motion

∇ (p + ρq2(z)/2) = ρ V × ω, (2.7)

where the expression in brackets is the total pressure

P = p + ρq2(z)/2.

Because ω = 0 for z /∈ Ω, from Eq. (2.7) we have

P = P−∞ = const at z /∈ Ω. (2.8)

We determine the projection of Eq. (2.7) onto the normal to the main-flow streamlines

∂P

∂u
= ρq(s, u)ω.

Integrating this equation with allowance for (2.2) and (2.8), we obtain

P (z) = P−∞ − ∆P (z) at z ∈ Ω,

where ∆P (z) is the loss of the total pressure:

∆P (z) = ρq0(s)γ1(s)[1 + O(ε)]. (2.9)

It should be noted that using (2.5), from (2.9) we obtain the following expression for the airfoil drag due to the flow
separation:

Rx1 = ρq0∞γ1∞δ1∞[1 + O(ε)], (2.10)

which, according to [5], also follows from the momentum principle.
2.2. Flow Model for the Subregion Ω2. Figure 3 schematically shows the vortex sheet shape in the neigh-

borhood of the airfoil Ω2, which corresponds to the visualized flow pattern for separated flow past thin airfoils [6]
(the curve L1 is the geometrical place of centers of vorticity of the average-flow particles, and its continuation is the
corresponding curve in the region Ω1; the curve L3 is the upper boundary Ω2). For convenience in describing the
flow, we introduce a system of orthogonal curvilinear coordinates (s0 and u0), whose coordinate lines u0 = const
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Fig. 3. Vortex sheet model over the airfoil.

coincide with the trajectories of the average motion of the vortex particles (u0 = 0 on the airfoil contour L0, and
the value of s0 coincides with the arc coordinate L0). Similarly to (2.3), we write the multiple integrals on the
left of Eq. (1.10) for Ω2 as a repeated integral of the variables s0 and u0 and consider its internal integral over the
variable u0:

J21 =

h0(s0)∫

0

ω(s0, u0)K0(z0, ζ) du0.

Here h0(s0) is the coordinate u0 of the upper boundary Ω2.
With accuracy up to terms of the first order of smallness, the components of the complex coordinate

ζ = ξ + iη ∈ Ω2 can be written as

ξ = ξ0 − u0 sin θ0(ζ0), η = η0 + u0 cos θ(ζ0), ζ0(s0) ∈ L0.

Substituting them into the expression for K0(z0, ζ), introduced in (1.6), we obtain

J21 =

h0(s0)∫

0

ω(s0, u0)
(x0 − ξ0) cos θ0(z0) + (y0 − η0) sin θ0(z0) + u0 sin [θ0(ζ0) − θ0(z0)]

(x0 − ξ0)2 + (y0 − η0)2 + 2u0[(x0 − ξ0) sin θ0(ζ0) − (y0 − η0) cos θ0(ζ0)]
du0.

Under the assumption that airfoil curvature κ(s0) = O(1/c), this integral can be written as

J21(s0) =

h0(s0)∫

0

ω(s0, u0)
(
K0(z0, ζ0) + u0[1 + O(ε)]

1
[(y0 − η0)2 − (x0 − ξ0)2]2

×
{
[(y0 − η0)2 − (x0 − ξ0)2] sin [θ0(ζ0) − θ0(z0)]

+ 2(x0 − ξ0)(y0 − η0) cos [θ0(ζ0) − θ0(z0)]
})

du0.

Similarly (2.2), we introduce a quantity γ1(s0) that defines the average intensity per unit length of the vortices
shedding from the leading edge and the coordinate of the centers of vorticity u0(s0), which will be denoted by
δ2(s0):

γ1(s0) =

h0(s0)∫

0

ω(s0, u0) du0, δ2(s0) =
1

γ1(s0)

h0(s0)∫

0

u0ω(s0, u0) du0.

Then, evaluating the integral J21(s0) with accuracy up to terms of the second order of smallness, we obtain

J21(s0) = γ1(s0)
(
K0(z0, ζ0) +

∂K0(z0, ζ0)
∂u0

δ0(s0)
)
.
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Thus, like Ω1, the vortex sheet Ω2 can be modeled by the vortex curve L1 to determine the average flow
velocity with accuracy up to terms of the second order of smallness. However, the models of the vortex sheets Ω1

and Ω2 are different: according to Fig. 3, the vortex curve L1 in the region Ω2 cannot be located along the main-flow
streamline since the source of the vortices is on the leading edge and the main-flow streamline passing through this
edge coincides with L0. The deviation of the trajectory of the vortex particles from the main-flow streamline can
be due not only to the effect of the second approximation of the problem solution but also to the fluid viscosity and
the unsteady nature of the particle separation process (especially in the neighborhood of the leading edge) since
they occupy a minor part of the region Ω2.

To determine the position of the curve L1 with allowance for the flow continuity condition, we introduce the
coordinates u0(s0) = δ2(s0) of its ends

δ2(0) = ε0, δ2(s0c) = δ1(0), (2.11)

and the complex velocity of the average motion of the vortex particles

Vω(z) = q(z) eiθ′(z), z ∈ Ω2,

assuming that the modulus of this velocity is equal to the modulus of the average-flow velocity. The above-mentioned
difference of the trajectory of the vortex particles from the average-flow streamlines will be taken into account using
the function

∆θ = θ′(z) − θ(z) = O(ε). (2.12)

According to [7], the particle vorticity can be determined from the formula

ω(z) = −∂q(z)
∂u′ +

q(z)
R(z)

,
1

R(z)
=

∂θ′(z)
∂s′

, z ∈ Ω2,

where s′(z) is the direction of the average velocity of the vortex particles, u′(z) is the direction of the normal to s′(z),
and R(z) is the curvature radius of the vortex-particle trajectory.

At the same time, in the natural coordinate system, the vorticity equals

ω(z) = −∂q(z)
∂u

+ q(z)
∂θ(z)
∂s

(u and s are the directions of the normal and tangent to the average-flow streamline). Eliminating ω(z) from
these equations, converting to the total coordinate system (u, s) in the relation obtained, and using (2.12) and the
continuity equation

q(z)
∂θ(z)
∂u

+
∂q(z)
∂s

= 0, (2.13)

we obtain

∂

∂s
[∆θ(z)] = O

(ε2

c

)
.

The equations of the trajectories of average motion of the vortex particles can be written as relations between the
coordinates u′

0(z) and their arc coordinates s0. The corresponding relations satisfy the equation

∂u′
0(s0)
∂s0

= θ′(z) − θ0(z0) + O(ε2).

Adding the function ±θ(z) to the right side of this equation and taking the partial derivative with respect to s, we
have

∂

∂s

(∂u′
0(s0)
∂s0

)
=

∂

∂s
[θ(z) − θ0(z0)] + O

(
ε2 q∞

c

)
.

Expanding the function θ(z) of this expression in a Taylor series in the neighborhood z0 and using (2.13), we have

∂2

∂s2
0

[u′
0(s0)] = O

(ε2

c

)
.
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Fig. 4. Vortex sheet model ahead of the airfoil.

From this, for the required function δ2(s0), it is easy to derive the equation

∂2

∂s2
0

[δ2(s0)] = 0,

which defines the position of the curve L1 in Ω2 with accuracy up to terms of the first order of smallness. Solving
this equation subject to conditions (2.11), we obtain

δ2(s0) = C0s0 + ε0, C0 = [δ1(0) − ε0]/s0c.

Below, it will be shown that for the quantity ε0, the following estimate holds:

ε0 = O(ε2c);

therefore, with accuracy up to terms of the first order of smallness and with allowance for (2.5), the position of the
curve L1 is defined by the formula

δ2(s0) =
δ1∞q0∞

s0cq0(s0c)
s0. (2.14)

2.3. Flow Model for the Subregion Ω3. When the flow separates from the thin airfoil, the vortex particles
shedding from the leading edge form a subregion of the vortex sheet Ω3, which, according to the Joukowski–
Chaplygin condition, is located in a small neighborhood ahead of this edge. By analogy with the region Ω2, we
model the vortex sheet in Ω3 by a vortex curve L1 (the dashed curve in Fig. 4), which at s0 = 0 coincides with the
corresponding curve in the region Ω2. In this case, by virtue of the Joukowski–Chaplygin condition, the tangent
to L1 at the point z = 0 coincides with the tangent to L0.

We introduce the arc coordinate s1 of the curve L1 with origin at the point of its conjugation with L0 (z = 0)
and a Cartesian coordinate system (ξ1, η1), whose O1ξ1 direction is parallel to the tangent to L0 at the point z = 0,
and whose O1η1 axis is tangent to L1. The point of contact of the O1η1 axis and L1 is the coordinate origin of this
system.

Let us estimate the intensity per unit length γ1(s1) of the vortex curves L1 at the point s10 = 0 and the
points s11 and s12 — the arc coordinates of the point of intersection L1 with the axis Oξ1 and the segment l3⊥Oξ1

(boundary Ω3), respectively. In view of (1.7), we note that the main-flow velocity corresponding to the velocity of
the incident flow past the airfoil V̄0∞ can be determined from the formula (2.6).

The perturbed component of the flow velocity arises from the additional flow incident on the airfoil at a
velocity V̄ ′∞(z) = εq0∞i e−iα0 . The vortex curve L1 can be treated as the free interface of a certain region Ω′

3

adjacent to the contour L0 and to the fluid flow region external with respect to it.
Taking into account the Joukowski–Chaplygin condition, which can be interpreted as the nonpenetration

condition for the initial segment L1, by analogy with the jet models, we assume that

V̄ ′(z) = 0, z ∈ Ω′
3. (2.15)
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In this case, however, the curve L1 is considered penetrable to the main flow, i.e., the Helmholtz equation describing
free-vortex motion in an ideal fluid is not valid for the average flow in the region Ω3. This circumstance can be
treated as a consequence of the vortex formation due to flow separation from the leading edge (which leads to a
loss of the total pressure); as a result, the condition of the Lagrange theorem are not satisfied in the region Ω3 [5].

To justify the proposed flow model for the region Ω3, we estimate some of its parameters. Postulating a loss
of the total pressure in this region, which is a consequence of the Joukowski–Chaplygin condition and using (2.2),
from (2.9) we obtain

∆P = O(ερq2
∞). (2.16)

In the model used, the total pressure changes suddenly by this value when intersecting the curve L1(s1).
Let us consider the corresponding relation for the intersection of L1 at the point s1 = s12:

p+(s12) + ρ(V +
s1

)2/2 − ∆P = p−(s12) + ρ(V −
s1

)2/2.

Here p+, V +
s1

, p−, and V −
s1

are the limiting values of the static pressure and the tangent component of the fluid
velocity in approaching L1 from above and from below, respectively. Taking into account the continuity condition
of the static pressure on the free boundary and (2.16), from the above relation we obtain the estimate of the
quantity γ1 at the point s1 = s12 on the upper branch of L1:

−γ1(s12) = V +(s12) − V −(s12) = O(εq0∞). (2.17)

Since V +(s12) ≈ q0(s12)−γ1(s12)/2, from (2.17) it follows that in the region Ω′
3, the fluid velocity is on the order of

the main-flow velocity, i.e., the curve L1 is penetrable to the main flow and estimate (2.17) is consistent to (2.15).
Similarly, using the assumption (2.15), we obtain the following estimate of the quantity γ1(s1) at the point

s1 = s10 = 0 on the lower branch L1:

γ1(s10) = 2q0(s10)[1 + O(ε)].

Below, the quantity of interest is the total intensity per unit length of the vortices of the lower and upper
branches L1 on the coordinate ξ at ξ → 0.

According to [8], in a small neighborhood of the coordinate origin O1 of the system (ξ1, η1), the intensity
per unit length of the vortex curve L1 is given by the expression

γ1(ξ) = A/
√

ξ. (2.18)

3. Algorithm for Determining Hydrodynamic Parameters. According to the Joukowski–Chaplygin
condition, in the case of separated airfoil flow, γ0(s0) < ∞ for s0 → 0; therefore, the sucking force, which occurs for
attached flow, tends to zero in the case considered. From this, it follows that the aerodynamic interaction of the
airfoil with the flow separated from the airfoil edges is completely determined by the pressure gradient ∆p(s0) on
the airfoil contour. In particular, the projections of the resultant aerodynamic forces on the axes Ox1 and Oy1 can
be defined by the formulas

Rx1 = −
∫

L0

∆p(s0) sin θ1(s0) ds0, Ry1 =
∫

L0

∆p(s0) cos θ1(s0) ds0,

where θ1(s0) is the angle between the tangent to L0 at the point s0 and the axis Ox1. In the model considered
above taking into account the continuity of the static pressure in passing through the vortex curve L1, the following
relation is valid:

∆p(s0) = −ρq(s0)γ(s0), s0 ∈ L0, (3.1)

where

q(s0) = q∞ cos [α − θ0(s0)] +
1
2π

∫

L0

γ(ζ0)K1(z0, ζ0) dζ0 + O(ε2q∞),

K1(z0, ζ0) =
(x0 − ξ0) sin θ0(z0) − (y0 − η0) cos θ0(z0)

(x0 − ξ0)2 + (y0 − η0)2
, γ(s0) = γ00(s0) + γ′

0(s0) + γ1(s0).
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It should be noted that (3.1) differs from the Joukowski formula in small in that apart from the functions of the
attached-vortex intensity γ00(s0)+γ′

0(s0), the function γ(s0) contains the function of the free-vortex intensity γ1(s0).
Let us show that with accuracy up to terms of the second order of smallness, the function γ(s0), which

completely defines ∆p(s0), can be found from Eq. (1.6), which, with the use of the model of the vortex sheet Ω
considered in Sec. 2, is brought to the form∫

L

γ(s0)K0(z0, ζ0) ds0 = F (z0) + 2πq∞ sin [α − θ0(z0)],

z0, ζ0 ∈ L = L0 ∪ ∆L0.
(3.2)

Here ∆L0 is the segment of the tangent to L0 at the point z0 = 0 (of length l0) between the point z = 0 and the
point of its intersection with the axis O1η1;

F (z0) =
∫

L′

G(z0, ζ0) ds0, G = g(s0)
∂K0(z0, ζ)

∂u0

∣∣∣
ζ=ζ0

, L′ = L ∪ L2,

γ(s0) = γ+
1 + γ−

1 , g(s0) = γ+
1 u+

0 + γ−
1 u−

0 at − l0 � s0 < 0,

γ(s0) = γ′
0 + γ1 + γ00, g(s0) = γ1δ0 at 0 � s0 � s0c;

γ±
1 and u±

0 are the intensity and coordinates of points of the upper (superscript plus) and lower (superscript minus)
branches of the vortex curve L1, respectively; L2 is the main-flow streamline segment with origin at the trailing
edge of the airfoil.

It should be noted that Eq. (3.2) can be treated as the condition of fluid nonpenetration through the arc L.
In this case, the fluid nonpenetration through the segment ∆L0 — the frontal part of this arc — is a consequence
of the Joukowski–Chaplygin condition for the smooth separation of the fluid from the leading edges of thin airfoils
in separated flow.

We also note that apart from the sought-for function γ(s0), the function F (z0) on the right side of Eq. (3.2)
is also unknown. We estimate the quantity F (z0). For this, taking into account (2.4) and (2.14), we write it as

F (σ) = q2
0∞γ1∞δ1∞J(σ),

J(σ) =
∫

L

f(s0)
q2
0(s0)

∂K(z0, ζ0)
∂u0

ds0, f(s0) =
{

q0(s0)s0/q(s0c)s0c, −l0 � s0 � s0c,

1, s0 > s0c.

For z = ζ0, the integrand J(σ) has a singularity. To determine the order of magnitude of this singularity, we
consider the function

∂K0(z0, ζ)
∂u0

∣∣∣
ζ=ζ0

=
1

[(y0 − η0)2 + (x0 − ξ0)2]2
{
[(y0 − η0)2 + (x0 − ξ0)2] sin [θ0(ζ0) − θ0(z0)]

+ 2(x0 − ξ0)(y0 − η0) cos [θ0(ζ0) + θ0(z0)]
}

.

As ζ0 → z0 (ζ0 ∈ L, z0 ∈ L), the following relations hold:

y0 − η0 = (x0 − ξ0) tan θ0(ζ0), θ0(z0) = θ0(ζ0) +
x0 − ξ0

R(z0) cos θ0(ζ0)
,

where R(z0) is the curvature radius of the curve L at the point z0. From this, it follows that

∂K0(z0, ζ)
∂u0

∣∣∣
ζ=ζ0

=
cos θ0(z0)

R(z0)(x0 − ξ0)
,

and the integral F (z0) is a Cauchy integral, which is evaluated in the sense of the principal value. According
to (2.18), at the left end of the integration contour (as s0 → −l0), the density of this integral has a power-law
singularity of order 1/2. Therefore, taking into account that for s0 � c, we have the estimate

∂K0(z0, ζ0)
∂u0

∣∣∣
ζ=ζ0

= O
( c2

s2
0

)
,
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and following [9], we find that the integral J(σ) is a bounded function everywhere and the quantity F (σ), in view
of (1.8) and (2.3), has the estimate

F (σ) = O(ε2q∞). (3.3)

In view this circumstance, the function γ(s0) is written as the sum of the two components

γ(s0) = γ11(s0) + γ12(s0), (3.4)

which should satisfy the equations∫

L

γ11(s0)K0(z0, ζ0) ds0 = 2πq∞ sin [α − θ0(z0)]; (3.5)

∫

L

γ12(s0)K0(z0, ζ0) ds0 = F (z0). (3.6)

From the expression for the kernel K0(z0, ζ0) of these equations obtained in the derivation of Eqs. (1.6) and (1.9),
it follows that Eqs. (3.5) and (3.6) are singular first-order integral equations which are equivalent to the equation
describing steady-state nonseparated flow past curvilinear thin airfoils. According to (2.18), the solution of these
equations is sought in the class of functions that are not bounded at the end s0 = −l0 of the contour L = L0 ∪∆L0

and are bounded at the end s0 = s0c. In this case, we first seek a solution of Eq. (3.5), whose right side is determined,
and then a solution of Eq. (3.6), whose right side, as will be shown below, is determined with accuracy up to terms
of the second order of smallness using the solution of Eq. (3.5).

We consider the solution of Eq. (3.5). Its form allows the function γ11(s0) to be treated as the intensity of
the vortex sheet modeling the contour L in nonseparated flow incident at an angle of attack α.

According to the hydrodynamic thin-airfoil theory [8], the quantities

(RL)x1 = ρ

∫

L

q11(s0)γ11(s0) sin θ1(s0) ds0, (RL)y1 = −ρ

∫

L

q11(s0)γ11(s0) cos θ1(s0) ds0

are components of the vector RL:

RL = RJ − Q

(RJ is the Joukowski force vector and Q is the sucking force vector). The projections of these vectors onto the
axes Ox1 and Oy1 are equal to

(RJ )x1 = 0, (RJ )y1 = −ρq∞Γ11, Γ11 =
∫

L

γ11(s0) ds0,

(RQ)x1 = −(π/4)ρA2 cos [α − θ0(0)], (RQ)y1 = (π/4)ρA2 sin [α − θ0(0)].

Here A is the coefficient in expression (2.18) for the singularity of the function γ11(s0) at the leading edge L, which
in the notation of Eq. (3.2) is written as

γ11(s0) = A/
√

s0 + l0, s0 ∈ L. (3.7)

This implies that

(RL)x1 = (π/4)ρA2 cos [α − θ0(0)], (RL)y1 = −ρ{q∞Γ11 + (π/4)A2 sin [α − θ0(0)]}. (3.8)

By virtue of a small deviation of the angle α from the angle of “shockless entrance” α0 (α−α0 = ε), the coefficient A

in expression (3.7) has the estimate

A/(q∞
√

c) = O(ε), (3.9)

which, in view of (2.10) and (3.8), agrees with (3.3). By analogy with (3.4), the components of the sought-for force
vector is written as

Rx1 = Rx1,1 + Rx1,2, Ry1 = Ry1,1 + Ry1,2. (3.10)

356



0.05 0.10 0.15 0.20 0.25

0.4

0.8

1.2

1.6

0 a

Cy

Fig. 5. Results of test calculation: the solid curve is calculated using the proposed method; the dash-
and-dotted curve is calculated using attached-flow theory; the dashed curve is the average value of Cy

obtained by solving the evolution problem [1]; the points are the results of experiments for an airfoil with
the geometrical characteristics similar to the geometrical characteristics of a plate [3].

Using (3.9), from (3.8), we obtain
Rx1,1 = 0, Rx1,2 = (π/4)ρA2 cos [α − θ0(0)][1 + O(ε)]. (3.11)

It should be noted that the quantity (RL)y1 considered above differs from the corresponding component of
the force Ry1 acting on the airfoil contour L0 since the contour L differs somewhat from the airfoil L0. Taking into
account that L = L0 ∪ ∆L0, we consider the part of the quantity (RL)y1 that corresponds to the segment ∆L0 of
the contour L:

∆(RL)y1 = −ρq0(0)∆Γ, ∆Γ =
∫

∆L0

γ11(s0) ds0.

Using (3.6), we obtain ∆Γ = 2A
√

l0. Because on the segment ∆L0, the function γ(s0) = γ+
1 (s0)+γ−

1 (s0), from (2.17)
and (2.18), we obtain √

l0 =
A

2q0(0)
[1 + O(ε)].

As a result, we have
∆(RL)y1 = −ρA2[1 + O(ε)]. (3.12)

[In view of (3.9), the expression for
√

l0 leads to the estimate δ0(0) = ε0 = O(ε2c), which a priori was used in the
derivation of formula (2.14).]

Let us consider Eq. (3.6). With allowance for (2.10) and (3.11), the right side of this equation is written
with accuracy up to terms of the second order of smallness in the form

F (z0) = −(π/4)A2 cos[α − θ0(0)]J(z0).

Using the solution of this equation from (3.1), we find the lifting force component

R′
y1,2 = −ρ

∫

L0

[q11(s0)γ12(s0) + q12(s0)γ11(s0)] cos θ1(s0) ds0. (3.13)

As a result, from (3.8)–(3.13) we obtain the following relations with accuracy up to terms of the second order of
smallness:

Rx1 = (π/4)ρA2 cos [α − θ0(0)] = |Q| cos [α − θ0(0)];

Ry1 = −ρ{q∞Γ11 + R′
y1,2 − A2[(π/4) sin [α − θ0(0)] + 1]}. (3.14)
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Thus, in the model considered, the time of calculation of the average aerodynamic characteristics of thin
airfoils is two orders of magnitude smaller than that in the methods based on the solution of the evolution problem [1].
It should be noted that the aerodynamic drag of thin airfoils due to flow separation from their edges is proportional
to the sucking force, which is present in the model of attached flow past the airfoil.

4. Verification of the Proposed Model. The geometrical model of the vortex shedding and the estimate
of its parameters given in Sec. 2 are in good qualitative agreement with the observation results presented in [6].
A comparison of the quantitative results of calculation of the aerodynamic characteristics of thin airfoils for the
given model with the results of calculation using another method and with experimental data was performed for the
case of flow past a plate. Figure 5 gives a curve of the lift coefficient of the plate Cy versus the angle of attack α.
It should be noted that in the case considered, where α0 = 0, θ0(s0) = 0, and α = ε, the curve of Cy(α) plotted by
formula (3.14) invoking thin-airfoil theory [8] is transformed to an analytical expression of the form

Cy = 2π sin ε(1 − (4/π) sin ε).

From Fig. 5, it follows that the calculation results for the given model agree satisfactorily with experimental data
over a wide range of the angle of attack.

This work was supported by the Integration project of the Siberian Division of the Russian Academy of
Sciences (Project No. 27).
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